Semester-IV

Course Code: BCAC10T	Course Title: Python Programming
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

- Explain the basic concepts of Python Programming.
- Demonstrate proficiency in the handling of loops and creation of functions.
- Identify the methods to create and manipulate lists, tuples and dictionaries.
- Discover the commonly used operations involving file handling.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Develop the emerging applications of relevant fields using Python.

Content	Hours
Unit-1	41.7
Introduction to Features and Applications of Python; Python Versions; Installation of Python; Python Command Line mode and Python IDEs; Simple Python Program. Python Basics: Identifiers; Keywords; Statements and Expressions; Variables; Operators; Precedence and Association; Data Types; Indentation; Comments; Built-in Functions- Console Input and Console Output, Type Conversions; Python Libraries; Importing Libraries with Examples. Python Control Flow: Types of Control Flow; Control Flow Statements- if, else, elif, while loop, break, continue statements, for loop Statement; range () and exit	10
() functions.	F. E.H.
Exception Handling: Types of Errors; Exceptions; Exception Handling using try, except and finally. Python Functions: Types of Functions; Function Definition- Syntax, Function Calling, Passing Parameters/arguments, the return statement; Default Parameters; Command line Arguments; Key Word Arguments; Recursive Functions; Scope and Lifetime of Variables in Functions. Strings: Creating and Storing Strings; Accessing Sting Characters; the str() function; Operations on Strings- Concatenation, Comparison, Slicing and Joining, Traversing; Format Specifiers; Escape Sequences; Raw and Unicode Strings; Python String Methods.	08

2000

Unit-3	
Lists: Creating Lists; Operations on Lists; Built-in Functions on Lists; Implementation of Stacks and Queues using Lists; Nested Lists. Dictionaries: Creating Dictionaries; Operations on Dictionaries; Built-in Functions on Dictionaries; Dictionary Methods; Populating and Traversing Dictionaries. Tuples and Sets: Creating Tuples; Operations on Tuples; Built-in Functions on Tuples; Tuple Methods; Creating Sets; Operations on Sets; Built-in Functions on Sets; Set Methods.	08
Unit-4	
File Handling: File Types; Operations on Files- Create, Open, Read, Write, Close Files; File Names and Paths; Format Operator. Object Oriented Programming: Classes and Objects; Creating Classes and Objects; Constructor Method; Classes with Multiple Objects; Objects as Arguments; Objects as Return Values; Inheritance- Single and Multiple Inheritance, Multilevel and Multipath Inheritance; Encapsulation- Definition, Private Instance Variables; Polymorphism- Definition, Operator Overloading.	08
Unit-5	
GU Interface: The tkinter Module; Window and Widgets; Layout Management-pack, grid and place. Python SQLite: The SQLite3 module; SQLite Methods- connect, cursor, execute, close; Connect to Database; Create Table; Operations on Tables- Insert, Select, Update. Delete and Drop Records. Data Analysis: NumPy- Introduction to NumPy, Array Creation using NumPy, Operations on Arrays; Pandas- Introduction to Pandas, Series and DataFrames, Creating DataFrames from Excel Sheet and .csv file, Dictionary and Tuples. Operations on DataFrames. Data Visualisation: Introduction to Data Visualisation; Matplotlib Library;	08

References:

- 1. Think Python How to Think Like a Computer Scientist, Allen Downey et al., 2nd Edition, Green Tea Press. Freely available online @ https://www.greenteapress.com/thinkpython/thinkCSpy.pdf, 2015.
- 2. Introduction to Python Programming, Gowrishankar S et al., CRC Press, 2019.
- 3. Python Data Analytics: Data Analysis and Science Using Pandas, matplotlib, and the Python Programming Language, Fabio Nelli, Apress®, 2015

CHAIRMAN

Dept. of Computer Science

Gulbarga University, Gulbarga

- 4. Advance Core Python Programming, MeenuKohli, BPB Publications, 2021.
- 5. Core PYTHON Applications Programming, Wesley J. Chun, 3rd Edition, Prentice Hall, 2012.
- 6. Automate the Boring Stuff, Al Sweigart, No Starch Press, Inc, 2015.
- 7. Data Structures and Program Design Using Python, D Malhotra et al., Mercury Learning and Information LLC, 2021.
- 8. http://www.ibiblio.org/g2swap/byteofpython/read/
- 9. https://docs.python.org/3/tutorial/index.html.

2000

Dept. of Computer Science

Course Code: BCAC10P	Course Title: Python Programming Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 02 Hours

Programs for Practical Component:

Part-A

- 1. Check if a number belongs to the Fibonacci Sequence
- 2. Solve Quadratic Equations
- 3. Find the sum of n natural numbers
- 4. Display Multiplication Tables
- 5. Check if a given number is a Prime Number or not
- 6. Implement a sequential search
- 7. Create a calculator program
- 8. Explore string functions
- 9. Implement Selection Sort
- 10. Implement Stack
- 11. Read and write into a file

Part-B

- 1. Demonstrate usage of basic regular expression
- 2. Demonstrate use of advanced regular expressions for data validation.
- 3. Demonstrate use of List
- 4. Demonstrate use of Dictionaries
- 5. Create SQLite Database and Perform Operations on Tables
- 6. Create a GUI using Tkinter module
- 7. Demonstrate Exceptions in Python
- 8. Drawing Line chart and Bar chart using Matplotlib
- 9. Drawing Histogram and Pie chart using Matplotlib
- 10. Create Array using NumPy and Perform Operations on Array
- 11. Create DataFramefrom Excel sheet using Pandas and Perform Operations on DataFrames

Note: A minimum of 10 Programs should be done in each Part.

Evaluation Scheme for Lab Examination:

	Marks
Flowchart / Algorithm	03
Writing the Program	05
Flowchart/Algorithm	03
Writing the Program	05
of Examiner choice	06
Viva Voce	03
otal	25
	Writing the Program Flowchart/Algorithm Writing the Program of Examiner choice Viva Voce

CHAIRMAN

Dept. of Computer Science

Course Code: BCAC11T	Course Title: Multimedia and Animation
Course Credits: 03	Hours/Week: 03
Total Contact Hours: 42	Formative Assessment Marks: 40
Exam Marks: 60	Exam Duration: 02 Hours

Course Outcomes (COs):

At the end of the course, students will be able to:

- Write a well-designed, interactive Web site with respect to current standards and practices.
- Demonstrate in-depth knowledge of an industry-standard multimedia development tool and its associated scripting language.
- Determine the appropriate use of interactive versus standalone Web applications.

	Content	Hours
Jnit-1	Web Design: Origins and evolution of HTML, Basic syntax, Basic text markup, Images, Lists, Tables, Forms, Frame, Overview and features of HTML5. CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The and <div> tags; Overview and features of CSS3. JavaScript: Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input.</div>	10
Unit-2	Animation: What is an Animation? The Start and End States, Interpolation, Animations in HTML. All About CSS Animations, Creating a Simple Animation, Detailed Look at the CSS Animation Property, Keyframes, Declaring Multiple Animations, Wrap-up. All About CSS Transitions, Adding a Transition, Looking at Transitions in Detail, The Longhand Properties, Longhand Properties vs. Shorthand Properties, Working with Multiple Transitions.	08
Unit-3		
	HTML5 – SVG: Viewing SVG Files, Embedding SVG in HTML5, HTML5 – SVG Circle, HTML5 – SVG Rectangle, HTML5 – SVG Line, HTML5 – SVG Ellipse, HTML5 – SVG Polygon, HTML5 – SVG Polyline, HTML5 – SVG Gradients, HTML5 – SVG Star.	

Unit-4	nicse Crichiss 03 Unions/Weeks 03	
	HTML5-CANVAS: The Rendering Context, Browser Support, HTML5 Canvas Examples, Canvas - Drawing Rectangles, Canvas - Drawing Paths, Canvas - Drawing Lines, Canvas - Drawing Bezier Curves, Canvas - Drawing Quadratic Curves, Canvas - Using Images, Canvas - Create Gradients.	08
Unit-5	ha die emerce seistementalie die en	
Silvero	HTML5 - Styles and Colors, Canvas - Text and Fonts, Canvas - Pattern and Shadow, Canvas - Save and Restore States, Canvas - Translation, Canvas - Rotation, Canvas - Scaling, Canvas - Transforms, HTML5 Canvas - Composition, Canvas - Animations.	08

References:

- 1. The Complete Reference HTML and CSS, 5thEdition, Thomas A Powell, 2017.
- 2. Animation in HTML, CSS, and JavaScript, Kirupa Chinnathambi, 1st Edition, Createspace Independent Pub, 2013.

Web Resources

- 1. https://www.w3.org/Style/CSS/current-work#CSS3
- 2. http://bedford-computing.co.uk/learning/cascading-style-sheets-css/

CHAIRMAN

Dept. of Computer Science

Gulbarga University, Gulbarga

Course Code: BCAC11P	Course Title: Multimedia and Animation Lab
Course Credits: 02	Hours/Week: 04
Total Contact Hours: 52	Formative Assessment Marks: 25
Exam Marks: 25	Exam Duration: 02 Hours

Part A:

- 1) Write a HTML/5 program to demonstrate the use of Font family, font variant, font style, and font size.
- 2) Write a HTML/5 program to display random contents using list properties:
- a) Ordered list b) Unordered list
- 3) Write a HTML/5 program to create gradient using CSS.
- 4) Write a HTML/5 code to demonstrate following CSS animation properties:
- a) Delay b) Direction c) Duration
- 5) Write a HTML/5 program to demonstrate key frames
- 6) Write a HTML/5 code to demonstrate CSS transition and transformation.
- 7) Write a HTML/5 program to turn on/off a light bulb using JavaScript. Make use of .gif image and buttons.

Part B:

- 1) Write a HTML/5 program to draw rectangle, line, polygon, polyline using SVG.
- 2) Write a HTML/5 program to draw linear and radial gradient ellipse using SVG.
- 3) Write a HTML/5 program to draw a star using SVG.
- 4) Write a HTML/5 program to draw line, circle, rectangle, gradient, text using canvas.
- 5) Write a HTML/5 program to demonstrate translation, rotation, scaling, and transform using canvas.
- 6) Write a HTML/5 program to demonstrate Bezier Curves and Quadratic Curves.
- 7) Write a HTML/5 program to create canvas and add a red square onto the game area with up/down/left/right controller buttons.
- 8) Write a HTML/5 canvas program to add random size obstacles with red square controller button.

CHAIRMAN

Dept. of Computer Science

Evaluation Scheme for Lab Examination

Assessment Criteria	caoagaid meast	Marks
Activity – 1 from Part A	rt A Write up on the activity/ task	05
	Demonstration of the activity/ task	05
Activity-2 from Part B	Write up on the activity/ task	05
	Demonstration of the activity/ task	05
	Viva Voce	05
	Total	25

GOSSIL

Dept. of Computer Science
Gulbarga University, Gulbarga

Course Code: BCAC12T	Course Title: Operating System Concepts	100 812
Course Credits: 03	Hours/Week: 03	the ration.
Total Contact Hours: 42	Formative Assessment Marks: 40	8.15
Exam Marks: 60	Exam Duration: 02 Hours	

Course Outcomes (COs):

At the end of the course, students will be able to:

- Explain the fundamentals of the operating system.
- Comprehend multithreaded programming, process management, process synchronization, memory management and storage management.
- Compare the performance of Scheduling Algorithms
- Identify the features of I/O and File handling methods.

Content	Hours
Unit-1	
Introduction to Operating System: Definition, History and Examples of Operating System; Computer System organization; Types of Operating Systems; Functions of Operating System; Systems Calls; Operating System Structure. Process Management: Process Concept- Process Definition, Process State, Process Control Block, Threads; Process scheduling-Multiprogramming, Scheduling Queues, CPU Scheduling, Context Switch; Operations on Processes-Creation and Termination of Processes; Inter process communication (IPC)-Definition and Need for Inter process Communication; IPC Implementation Methods- Shared Memory and Message Passing;	10
Unit-2	
Multithreaded Programming: Introduction to Threads; Types of Threads; Multithreading- Definition, Advantages; Multithreading Models; Thread Libraries; Threading Issues. CPU Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling; Multiprocessor Scheduling; Real-Time CPU Scheduling.	08
Unit-3	
Process Synchronization: Introduction; Race Condition; Critical Section Problem and Peterson's Solution; Synchronization Hardware, Semaphores; Classic Problems of Synchronization- Readers and Writers Problem, Dining Philosophers Problem; Monitors.	08

CHAIRMAN

Dept. of Computer Science

Deadlocks: System Model; Deadlocks Characterization; Methods for Handling Deadlocks; Deadlock Prevention; Deadlock Avoidance; Deadlock Detection; and	
Recovery from Deadlock.	
Unit-4	
Memory Management: Logical and Physical Address Space; Swapping; Contiguous Allocation; Paging; Segmentation; Segmentation with Paging. Virtual Memory: Introduction to Virtual Memory; Demand Paging; Page Replacement; Page Replacement Algorithms; Allocation of frames, Thrashing.	08
Unit-5	
File System: File Concepts- Attributes, Operations and Types of Files; File System; File Access methods; Directory Structure; Protection; File System Implementation- File System Structure, Allocation Methods, Free Space	08
Management.	

References:

- 1. Operating System Concepts, Silberschatz' et al., 10th Edition, Wiley, 2018.
- 2. Operating System Concepts Engineering Handbook, Ghosh PK, 2019.
- 3. Understanding Operating Systems, McHoes A et al.,7th Edition, Cengage Learning, 2014.
- 4. Operating Systems Internals and Design Principles, William Stallings, 9th Edition, Pearson.
- 5. Operating Systems A Concept Based Approach, Dhamdhere, 3rd Edition, McGraw Hill Education India. Modern Operating Systems, Andrew S Tanenbaum, 4th Edition, Pearson.

GONT

Dept. of Computer Science Gulbarga University, Gulbarga

Open Elective-4

Course Code: CSOET4	Course Title: Python Programming Concepts	
Course Credits: 03	Hours/Week: 03	
Total Contact Hours: 42	Formative Assessment Marks: 40	
Exam Marks: 60	Exam Duration: 02 Hours	

Course Outcomes (COs):

- Explain the fundamentals of Computers.
- Explain the basic concepts of Python Programming.
- Demonstrate proficiency in the handling of loops and the creation of functions.
- Identify the methods to create and store strings.

Content	Hour
Unit - 1	
Introduction to Computers - Computer Definition, Characteristics of Computers, Types of Computers, Basic Organization of a Digital Computer; Number Systems - different types, Computer Codes - BCD, Gray Code, ASCII and Unicode; Boolean Algebra - Boolean Operators with Truth Tables; Types of Software - System Software and Utility Software; Computer Languages -	10
Machine Level, Assembly Level & High Level Languages, Translator Programs – Assembler, Interpreter and Compiler; Planning a Computer Program -	
Algorithm, Flowchart and Pseudo code with Examples.	
Unit - 2	
Introduction to Features and Applications of Python; Python Versions;	8
nstallation of Python; Python Command Line mode and Python IDEs; Simple	
Python Program. Identifiers; Keywords; Statements and Expressions; Variables; Operators; Precedence and Association; Data Types; Indentation; Comments; Built-in Functions- Console Input and Console Output, Type Conversions; Python Libraries; Importing Libraries with Examples; Illustrative programs.	
Unit - 3	
Python Control Flow: Types of Control Flow; Control Flow Statements- if, else, elif, while loop, break, continue statements, for loop Statement; range() and exit () functions; Illustrative programs.	8
Unit - 4	
Python Functions: Types of Functions; Function Definition- Syntax, Function	8

CHAIRMAN O

Dept. of Computer Science

7 7		٠.		_
	73	11	-	ь.
-			•	-

Strings: Creating and Storing Strings; Accessing Sting Characters; the str() function; Operations on Strings- Concatenation, Comparison, Slicing and Joining, Traversing; Format Specifiers; Escape Sequences; Raw and Unicode Strings; Python String Methods; Illustrative programs.

8

References

- 1. Computer Fundamentals (BPB), P. K. Sinha & Priti Sinha
- 2. Think Python How to Think Like a Computer Scientist, Allen Downey et al., 2nd
- 3. Edition, Green Tea Press. Freely available online 2015. @https://www.greenteapress.com/thinkpython/thinkCSpy.pdf
- 4. Introduction to Python Programming, Gowrishankar S et al., CRC Press, 2019.
- 5. http://www.ibiblio.org/g2swap/byteofpython/read/
- 6. http://scipy-lectures.org/intro/language/python_language.html
- 7. https://docs.python.org/3/tutorial/index.html

CHAIRMAN

Dept. of Computer Science

Gulbarga University, Gulbarga

SEC 2 Paper Arti icial Intelligence

Syllabus for B.A, B.Sc., B.Com, BBM, BBA, BCA, B.Sc (Computer Science),BSW,BFA,BVA, and all other Degree Programmes offered by Gulbarga University, Kalaburagi from time to time.

Course Code:SEC2	Course Title: Artificial Intelligence
Course Credits: 02	Hours/Week: 01 Hr Theory & 02 Hrs Practical
Total Contact Hours:13T+26P	Formative Assessment Marks: 20
Exam Marks: 30	Exam Duration: 02

Course Outcomes(COs):

At the end of the course, students will be able to:

- Appraise the theory of Artificial intelligence and list the significance of AI.
- Discuss the various components that are involved in solving an AI problem.
- Illustrate the working of AI Algorithms in the given contrast.
- Analyze the various knowledge representation schemes,
 Reasoning and Learning techniques of AI.
- Apply the AI concepts to build an expert system to solve the real-world problem.

Content	Hours
Unit-1	
Overview of AI: Definition of Artificial Intelligence, Philosophy of AI, Goals of AI, Elements of AI system, Programming a computer without and with AI, AI Techniques, History of AI. Intelligent Systems: Definition and understanding of Intelligence, Types of	05
Intelligence, Human Intelligence vs Machine Intelligence.	
Unit-2	
AI Applications: Virtual assistance, Travel and Navigation, Education and Healthcare, Optical character recognition, E-commerce and mobile payment systems, Image based search and photo editing.	05
AI Examples in daily life: Installation of AI apps and instructions to use AI apps.	6
Unit-3	
Robotics: Introduction to Robotics, Difference in Robot System and Other AI Program, Components of a Robot.	03

Note: Artificial Intelligence Paper must be taught by Computer Science Faculty only.

CHAIRMAN

Dept. of Computer Science

67

Gulbarga University, Gulbarga

Laboratory Activities:

· Amazon Alexa:

https://play.google.com/store/apps/details?id=com.amazon.dee.app&hl=en&gl =US

Google Lens:

https://play.google.com/store/search?q=google+lens&c=apps&hl=en&gl=US

• Image to Text to Speech ML OCR:

https://play.google.com/store/apps/details?id=com.mlscanner.image.text.speech&hl=en_IN&gl=US

Google Pay:

https://play.google.com/store/apps/details?id=com.google.android.apps.nbu.paisa.us er&hl=en_IN&gl=US

• Grammarly:

https://play.google.com/store/search?q=grammarly&c=apps&hl=en IN&gl=

· Google Map:

https://play.google.com/store/search?q=google+maps&c=apps&hl=en&gl=US

· FaceApp:

https://play.google.com/store/apps/details?id=io.faceapp&hl=en IN&gl=US

Socratic:

 $\frac{https://play.google.com/store/apps/details?id=com.google.socratic\&hl=en_IN\&gl=U}{S}$

• Google Fit: Activity Tracking:

https://play.google.com/store/apps/details?id=com.google.android.apps.fitness&hl=e n IN&gl=US

SwiftKey Keyboard:

https://swiftkey-keyboard.en.uptodown.com/android

• E-commerce App:

https://play.google.com/store/apps/details?id=com.jpl.jiomart&hl=en_IN&gl=US

Text Books:

- 1. Wolfgang Ertel, "Introduction to Artificial Intelligence", 2nd Edition, Springer International Publishing 2017.
- 2. Michael Negnevitsky, "Artificial Intelligence A Guide to Intelligent Systems", 2nd Edition, Pearson Education Limited 2005.

References:

- 1. https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_tutorial.pdf
- 2. Kevin Knight, Elaine Rich, Shivashankar B. Nair, "Artificial Intelligence", 3rd Edition, July 2017.

Reference Links:

- 1. Voice Assistant: https://alan.app/blog/voiceassistant-2/
- 2. Browse with image: https://www.pocket-lint.com/apps/news/google/141075-what-is-google-lens-and-how-does-it-work-and-which-devices-have-it
- 3. OCR: https://aws.amazon.com/what-is/ocr/

CHAIRMAN

Dept. of Computer Science

Gulbarga University, Gulbarga

68

- 5. Grammarly: https://techjury.net/blog/how-to-use-grammarly/#gref
- 6. Travel & Navigation: https://blog.google/products/maps/google-maps-101-ai-power-new-features-io-2021/
- 7. AI in photo editing: https://digital-photography-school.com/artificial-intelligence-changed-photo-editing/
- 8. AI in education: https://www.makeuseof.com/what-is-google-socratic-how-does-it-work/
- 9. AI in health and fitness: https://cubettech.com/resources/blog/implementing-machine-learning-and-ai-in-health-and-fitness/
- 10. E-commerce and online shopping: https://medium.com/@nyxonedigital/importance-of-e-commerce-and-online-shopping-and-why-to-sell-online-5a3fd8e6f416

GOZZIL

CHAIRMAN

Dept. of Computer Science

Gulbarga University, Gulbarga